

Page 1 of 15

ENA G83-2-1

Recommendations for the connection of type tested small-scale embedded generators (up to 16A per phase) in parallel with low-voltage distribution systems

Report reference No...... P2018062802

Tested by

(printed name and signature) Daniel Keis

Approved by

(printed name and signature) Manuel Shimasaki

Date of issue 28 June 2018

Testing Laboratory Name EnTEST Laboratories

ACCREDITED LABORATORY

Test indicated as traceable only are outside the scope of the laboratories accreditation.

Manuel Shimwaki

Accreditation number: 1273

Address 1 Treffers Road, Wigram, Christchurch, New Zealand 8042

Testing location/procedure NZ

Other (please explain):

Applicant's Name Enphase Energy

Test specification

Standard: ENA G83-2-1

Test procedure EnTEST Laboratories

Non-standard test method:

Test Report Form No. ENA G83-2-1

TRF originator. EnTEST Laboratories

Master TRF June 2018

This publication may be reproduced in whole or in part for non-commercial purposes as long as EnTEST Laboratories is acknowledged as copyright owner and source of the material. EnTEST Laboratories takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Solar Micro Inverter

Trademark

ENPHASE.

Copy of marking plate

Model: IQ7-60-X-INT

ENPHASE.

IQ7

IQ7 Grid Support Interactive Inverter
For Enphase patent information, refer to:
http://enphase.com/company/patents/

Power Factor Range: +/-0.7
Max. DC input: 48V
Max. input short-circuit current: 15A
Max. input continuous current: 10A

WARNING: ELECTRIC SHOCK
HAZARD: DC CONDUCTORS OF
THIS PHOTOVOLTAIC SYSTEM ARE
UNGROUNDED AND WILL BE
ENERGIZED WITH SUNLIGHT.

AC output voltage: 230V, 1 phase

AC output current: 1.04 A AC output frequency: 50Hz

AC output power (max. continuous): 240VA

Output Level: Class 122
Operating temperature: -40°C to +65°C
Ingress protection: IP67
Humidity: 4K4H
Pollution Degree: 3
Assembled in China

WARNING: HOT SURFACE:
TO REDUCE THE RISK OF BURNS,
DO NOT TOUCH.

DISCONNECT BOTH AC AND DC

BEFORE SERVICING.

Figure 1: IQ7 marking plate

Model: IQ7-ACM-INT

TRF No.: ENA G83-2-1

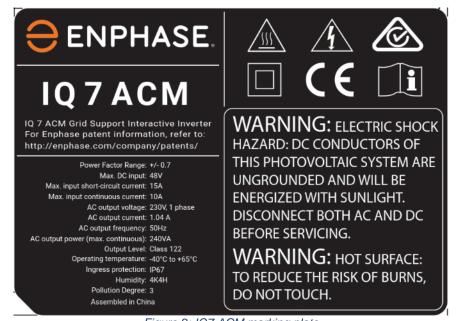


Figure 2: IQ7 ACM marking plate

28 June 2018

Report No.: P2018062802

Report No.: P2018062802

Worst case uncertainty of Measurements

Parameter	Range	Instrument accuracy of
	11495	Measuring Range
Voltage		
- Up to 1000 V	up to 1 kHz	±1,5 %
	1kHz up to 5 kHz	±2 %
	5 kHz up to 20 kHz	±3 %
	20 kHz and above	±5 %
- 1000 V and above	dc up to 20 kHz	±3 %
	20 kHz and above	±5 %
Current		
- Up to 5 A	up to 60 Hz	±1,5 %
	above 60 Hz up to 5 kHz	±2,5 %
	5 kHz up to 20 kHz	±3,5 %
	20 kHz and above	±5 %
- Above 5 A	up to 5 kHz	±2,5 %
	5 kHz up to 20 kHz	±3,5 %
	20 kHz and above	± %
Leakage (Touch) current ¹	50 Hz up to 60 Hz	±3,5 %
,	greater 60 Hz up to 5 kHz	±5 %
	greater 5 kHz up to 100 kHz	±10 %
	greater 100 kHz up to 1 MHz	under consideration
Power (50/60 Hz)	up to 3 kW	±3 %
	above 3 kW	±5 %
Power Factor (50/60 Hz)		±0,05
Frequency	up to 10 kHz	±0,2 %
requency	1 mW up to 100 m Ω and above 1 M Ω up to 1	10,2 70
Resistance	ΤΩ	±5 %
	above 1 TΩ	±10 %
	for all other cases	±3 %
Temperature ^{2,3}		
•	- 35°C to below 100° C	±2° C
	100° C up to 500° C	±3 %
	below - 35°C ± 3°C	±3° C
Time	10 ms up to 200 ms	±5 %
	200 ms up to 1 s	±10 ms
	1 s and above	±1 %
Linear dimensions	up to 1 mm	±0,05 mm
	1 mm up to 25 mm	±0,1 mm
	25 mm and above	±0,5 %
Mass	above 10 g and up to 100 g	±1 %
made	100 g up to 5 kg	±2 %
	5 kg and above	±5 %
Force	for all values	±6 %
Mechanical energy	for all values ± 10%	±10 %
Torque	Tot all values ± 1070	±10 %
Angles		±1 degree
Relative humidity	30% to 95% RH	±6% RH
Barometric air pressure	50 /0 tO 55 /0 ttt I	±10 kPa

- 1. The stated tolerances apply to the total tolerance of the leakage (touch) current circuit and metering Instrument.
- 2. Thermocouple not included in the Instrument accuracy of measuring range. Thermocouples type "T" premium grade, are recommended.
- 3. Not for measurements related to relative humidity.

TRF No.: ENA G83-2-1

Page 4 of 15 Report No.: P2018062802

SUMMARY OF COMPLIANCE WITH ENA G83-2-1

All tests passed the requirements of the ENA G83-2-1 within the required limits and within the equipment uncertainties.

The Photovoltaic Micro-inverters, model numbers IQ7-60-X-Y-Z **COMPLIED** with the applicable clauses of ENA G83-2-1

Possible test case verdicts:

- test case does not apply to the test object: N/A

- test object does meet the requirement P(Pass)

- test object does not meet the requirement F(Fail)

Testing:

Date of receipt of test item...... April 2018

Date (s) of completion of tests...... : April – June 2018

General remarks:

- 1. The test results presented in this report relate only to the objects tested.
- 2. This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.
- 3. If the measured result complies up to the limit of acceptance, the result shall be reported along with our uncertainty of measurement. e.g. results to state window of uncertainty.
- 4. "(see Enclosure #)" refers to additional information appended to the report.
- 5. "(see appended table)" refers to a table appended to the report.

Report No.: P2018062802

General product information:

The EUT (Equipment Under Test), known as Photovoltaic Micro-inverters, model number IQ7 was supplied for testing to ENA G83-2-1 by Enphase Energy Inc of 1420 North McDowell Boulevard, Petaluma, CA 94954, USA.

Model rating table:

Specification	Units	IQ7
Rated output active power	W	240
Output apparent power	VA	240
Nominal output voltage	V _{rms}	230
Output voltage range	V _{rms}	230 / 184 to 276
Nominal output frequency	Hz	50
Output frequency range	Hz	45-55
AC output current	Arms	1.04
EN50530 efficiency	%	96.5
Full power MPPT input voltage range	V	27-37
Input operating range	V	16-48
Input current limit region	V	16-27
Input frequency	Hz	DC
Input maximum continuous current	А	10
DC LSC input maximum	A	15
Ingress protection		IP67
Environmental category		Outdoor
Wet locations		suitable
Pollution degree		PD3
Ambient temperature		-40C to +65C
Relative humidity		4K4H
Maximum altitude		Not rated
Overvoltage category		OVC III

IQ7-60-X-Y-Z Model nomenclature details:

X = 2, 5 or B

2 = Multicontact PV connector

5 = Amphenol PV connector

B = Friends PV connector

Y = blank or ACM (X marking not required)

Z = blank or any letter for country of intended installation (eg: US for North America, INT for International)

Firmware version:

TRF No.: ENA G83-2-1

520-00082-r01-v02.12.02

Page 6 of 15 Report No.: P2018062802

ENA G83-2-1	
APPENDIX A: Table of Results	

Appendix 4 Type Verification Test Report

- ^					
		nufacturer/sup ndation G83/2		tion of compl	iance with the requirements of
Linginicening	TCCCOTTITIC	idation 003/2	1.		
SSEG Type	reference r	number	IQ7-60-2-IN		
			IQ7-60-5-IN		
			IQ7-60-B-IN IQ7-60-ACM		
SSEG Type			Microinvert		
System Sup	plier name		Enphase E	nergy Inc	
Address			1420. N. M	cDowell Blvd	Petaluma, CA 94954, USA
			,,		, , , , , , , , , , , , , , , , , , , ,
	T			Γ_	
Tel	(877) 797-4	4743		Fax	
E:mail	dkeis@enp	haseenergy.c	com	Web site	enphase.com
				Connection	•
		≤ 3.68			e, split or three phase system
Maximum ra capacity, us		≤ 3.68 (x3)	kW three	ohase	
sheet if mor			k\// two ph	acce in three	phase system
connection option.			Κνν ίννο μι	10000 111 111100	priase system
			kW two ph	ases split ph	ase system
0050		1	1		

SSEG manufacturer/supplier declaration.

I certify on behalf of the company named above as a manufacturer/supplier of Small Scale Embedded Generators, that all products manufactured/supplied by the company with the above SSEG Type reference number will be manufactured and tested to ensure that they perform as stated in this Type Verification Test Report, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of G83/2-1.

Note that testing can be done by the manufacturer of an individual component, by an external test house, or by the supplier of the complete system, or any combination of them as appropriate. Where parts of the testing are carried out by persons or organisations other than the supplier then the supplier shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Page 7 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX A: Table of Results

Power Qua 3 1.4.1	lity. Harmor	nics. The requi	remen	t is specified	in section 5.4.1	, test ¡	orocedure	in Annex A or
SSEG	rating per ph	ase (rpp)		2.199	kW			
Harmonic	50%	of rated output		100% of rated output			NV=MV*3.68/rpp	
	Measured Value (MV) in	Normalised Value	P or F	Measured Value (MV) in	Normalised Value	P or F	Limit in BS EN 61000-	Higher limit for odd harmonics
	Amps	(NV) in Amps		Amps	(NV) in Amps		3-2 in Amps	21 and above
2	0.0094	0.0157	Р	0.0198	0.0331	Р	1.08	
3	0.0178	0.0298	Р	0.0265	0.0443	Р	2.3	
4	0.0006	0.0010	Р	0.0005	0.0008	Р	0.43	
5	0.1425	0.2385	Р	0.2999	0.5019	Р	1.14	
6	0.0005	0.0008	Р	0.0006	0.0010	Р	0.3	
7	0.0146	0.0244	Р	0.0035	0.0059	Р	0.77	
8	0.0005	0.0008	Р	0.0007	0.0012	Р	0.23	
9	0.0128	0.0214	Р	0.0047	0.0079	Р	0.4	
10	0.0005	0.0008	Р	0.0006	0.0010	Р	0.184	
11	0.0124	0.0208	Р	0.0107	0.0179	Р	0.33	
12	0.0005	0.0008	Р	0.0008	0.0013	Р	0.153	
13	0.0089	0.0149	Р	0.0096	0.0161	Р	0.21	
14	0.0007	0.0012	Р	0.0005	0.0008	Р	0.131	
15	0.0081	0.0136	Р	0.0108	0.0181	Р	0.15	
16	0.0004	0.0007	Р	0.0007	0.0012	Р	0.115	
17	0.0083	0.0139	Р	0.0116	0.0194	Р	0.132	
18	0.0005	0.0008	Р	0.0004	0.0007	Р	0.102	
19	0.0089	0.0149	Р	0.0087	0.0146	Р	0.118	
20	0.0009	0.0015	Р	0.0009	0.0015	Р	0.092	
21	0.0093	0.0156	Р	0.0106	0.0177	Р	0.107	0.16
22	0.0005	0.0008	Р	0.0004	0.0007	Р	0.084	
23	0.0044	0.0074	Р	0.0085	0.0142	Р	0.098	0.147
24	0.0006	0.0010	P	0.0005	0.0008	P	0.077	
25	0.0036	0.0060	P	0.0091	0.0152	P	0.09	0.135
26	0.0004	0.0007	P	0.0005	0.0008	P	0.071	
27	0.0054	0.0090	P	0.0092	0.0154	Р	0.083	0.124
28	0.0006	0.0010	P	0.0008	0.0013	Р	0.066	0.447
29	0.0032	0.0054	P	0.0066	0.0110	Р	0.078	0.117
30	0.0006	0.0010	P	0.0009	0.0015	P	0.061	0.400
31	0.0070	0.0117	Р	0.0076	0.0127	P	0.073	0.109
32	0.0006	0.0010	P	0.0008	0.0013	Р	0.058	0.400
33	0.0043	0.0072	P P	0.0048	0.0080	P P	0.068	0.102
34	0.0006	0.0010		0.0011	0.0018		0.054	0.006
35	0.0039	0.0065	P	0.0024	0.0040	P P	0.064	0.096
36	0.0004	0.0007	P	0.0008	0.0013		0.051	0.004
37	0.0058	0.0097	P	0.0030	0.0050	Р	0.061	0.091
38	0.0006	0.0010	Р	0.0011	0.0018	Р	0.048	0.007
39 40	0.0022 0.0018	0.0037 0.0030	P P	0.0015 0.0022	0.0025 0.0037	P P	0.058 0.046	0.087

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Page 8 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX A: Table of Results

Power Quality. Voltage fluctuations and Flicker . The requirement is specified in section 5.4.2, test procedure in Annex A or B 1.4.3									
Traceable results only		Starting)		Stoppin	g		Running	
	d_{max}	d _c	$d_{(t)}$	d_{max}	d _c	d _(t)	P_{st}	P _{lt} 2 hours	
Measured Values	0	0	0	0	0	0	0.08	0.07	
Normalised to standard impedance and 3.68kW for multiple units	0	0	0	0	0	0	0.048	0.041	
Limits set under BS EN 61000-3-2	4%	3.3%	3.3% 500ms	4%	3.3%	3.3% 500ms	1.0	0.65	
Test start date 16-May-20 Test location 1 Treffers F				Test end date , Wigram, Christchurch, N			16-May- , NZ	-2018	

•	Power quality. DC injection. The requirement is specified in section 5.5, test procedure in Annex A or B 1.4.4							
Test power level	10%	55%	100%					
Recorded value	0.0004	0.0002	0.0016					
as % of rated AC current	0.005%	0.002%	0.018%					
Limit	0.25%	0.25%	0.25%					

Power Quality. Power factor . The requirement is specified in section 5.6, test procedure in Annex A or B 1.4.2								
	216.2V	230V	253V	Measured at three voltage levels and at full output. Voltage to be maintained within				
Measured value	1.00	1.00	1.00	±1.5% of the stated level during the test.				
Limit	>0.95	>0.95	>0.95					

Page 9 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX A: Table of Results

Protection. Annex A or E		ests The	requirement	is specifie	d in section 5.3	3.1, test procedure in
Function	Setting		Trip test		"No trip tests	3"
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5Hz	20s	47.52 Hz	20.27 s	47.7Hz 25s	Confirmed
U/F stage 2	47Hz	0.5s	47.02 Hz	0.57 s	47.2Hz 19.98s	Confirmed
					46.8Hz 0.48s	Confirmed
O/F stage 1	51.5Hz	90s	51.48 Hz	91.25 s	51.3Hz 95s	Confirmed
O/F stage 2	52Hz	0.5s	51.98 Hz	0.57 s	51.8Hz 89.98s	Confirmed
					52.2Hz 0.48s	Confirmed

Protection. V Annex A or B		s The re	quirement is	specified in	n section 5.3.1	I, test procedure in
Function	Setting		Trip test		"No trip tes	sts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	200.1V	2.5s	200.7 V	2.56 s	204.1V 3.5s	Confirmed
U/V stage 2	184V	0.5s	183.8 V	0.56 s	188V 2.48s	Confirmed
					180V 0.48s	Confirmed
O/V stage 1	262.2V	1.0s	262.6 V	1.06 s	258.2V 2.0s	Confirmed
O/V stage 2	273.7V	0.5s	273.8 V	0.56 s	269.7V 0.98s	Confirmed
					277.7V 0.48s	Confirmed

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Page 10 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX A: Table of Results

Protection. Loss of Mains test. The requirement is specified in section 5.3.2, test procedure in Annex A or B 1.3.4										
To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.										
Test Power	10%	55%	100%	10%	55%	100%				
Balancing load on islanded network	95% of SSEG output	95% of SSEG output	95% of SSEG output	105% of SSEG output	105% of SSEG output	105% of SSEG output				
Trip time. Limit is 0.5 seconds	3.6 ms	3.2 ms	6.0 ms	3.6 ms	3.6 ms	6.0 ms				
For Multi phase SS single fuse as well				wn correctly	after the re	moval of a				
Test Power	10%	55%	100%	10%	55%	100%				
Balancing load on islanded	95% of SSEG	95% of SSEG	95% of SSEG	105% of SSEG	105% of SSEG	105% of SSEG				
network Trip time. Ph1 fuse removed	output 302 ms	output 444 ms	output 316 ms	output 384 ms	output 328 ms	output 282 ms				
Test Power	10%	55%	100%	10%	55%	100%				
Balancing load on islanded network	95% of SSEG output	95% of SSEG output	95% of SSEG output	105% of SSEG output	105% of SSEG output	105% of SSEG output				
Trip time. Ph2 fuse removed	364 ms	410 ms	436 ms	454 ms	302 ms	410 ms				
Test Power	10%	55%	100%	10%	55%	100%				
Balancing load on islanded network	95% of SSEG output	95% of SSEG output	95% of SSEG output	105% of SSEG output	105% of SSEG output	105% of SSEG output				
Trip time. Ph3 fuse removed	294 ms	304 ms	400 ms	300 ms	462 ms	322 ms				
Note for technologies which have a substantial shut down time this can be added to the 0.5 seconds in establishing that the trip occurred in less than 0.5s. Maximum shut down time could therefore be up to 1.0 seconds for these technologies.										
Indicate additional	shut down tin	ne included ir	above resu	ults.		0 ms				
Note as an alternatests should be rec			Э.	N 62116.	The followin	g sub set of				
Test Power and imbalance	33% -5% Q Test 22	66% -5% Q Test 12	100% -5% P Test 5	33% +5% Q Test 31	66% +5% Q Test 21	100% +5% P Test 10				
Trip time. Limit is 0.5s	94 ms	181 ms	170 ms	110 ms	96 ms	170 ms				

Page 11 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX A: Table of Results

Protection. Frequency change, Vector Shift Stability test The requirement is specified in section 5.3.3, test procedure in Annex A or B 1.3.6					
	Start	Change	End	Confirm no trip	
	Frequency	-	Frequency		
Positive Vector Shift	49.5Hz	+50 degrees		Confirmed	
Negative Vector Shift	50.5Hz	- 50 degrees		Confirmed	

Protection. Frequency change, RoCoF Stability test The requirement is specified in section 5.3.3, test procedure in Annex A or B 1.3.6						
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip			
49.0Hz to 51.0Hz	+0.95Hzs ⁻¹	2.1s	Confirmed			
51.0Hz to 49.0Hz	-0.95Hzs ⁻¹	2.1s	Confirmed			

	Re-connection Annex A or B		r. The requ	uirement is sp	ecified in sec	ction 5.3.4, test
Test should prove that the reconnection sequence starts after a minimum delay of 20 seconds						
for restoration	for restoration of voltage and frequency to within the stage 1 settings of table 1.					
Time delay	Measured		Checks on no reconnection when voltage or frequency			
setting	delay		is brought to just outside stage 1 limits of table 1.			
20s	27s		At 266.2V	At 196.1V	At 47.4Hz	At 51.6Hz
Confirmation that the SSEG does			Confirmed	Confirmed	Confirmed	Confirmed
not re-conne	ect.					

Fault level contribution. The requirement is specified in section 5.7, test procedure in Annex A or B 1.4.6						
For a directly coupled SSEG			For a Inverter SSEG			
Parameter	Symbol	Value	Time after fault	Volts	Amps	
Peak Short Circuit current	ĺp	5.78	20ms	0	0	
Initial Value of aperiodic current	Α	3.29	100ms	0	0	
Initial symmetrical short-circuit current*	I_k	2.48	250ms	0	0	
Decaying (aperiodic) component of short circuit current*	i _{DC}	0	500ms	0	0	
Reactance/Resistance Ratio of source*	X/ _R	2.5	Time to trip	0.01	In seconds	

Page 12 of 15 Report No.: P2018062802

ENA G83-2-1
APPENDIX A: Table of Results

Self-Monitoring solid state switching The requirement is specified in section 5.3.1, No specified test requirements.	Yes/or NA
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 seconds.	

Additional comments		

Page 13 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX B: Photographic record of sample

IQ7 Photos:

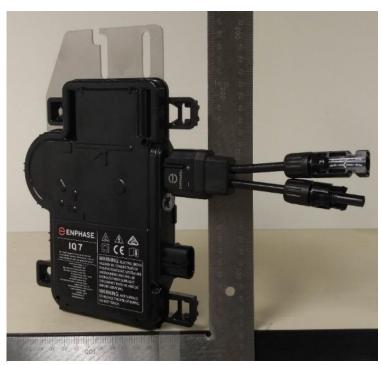


Figure 3: IQ7 general view

Figure 4: IQ7 Bottom

Page 14 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX B: Photographic record of sample

Figure 5: IQ7 Top

Figure 6: IQ7 Cable side

Page 15 of 15 Report No.: P2018062802

ENA G83-2-1

APPENDIX B: Photographic record of sample

Figure 7: IQ7 Right side

Figure 8: IQ7 Label side

Figure 9: IQ7 Mounting plate side

End of report

